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Summary of Research Work

The specification spectrum for the proposed Space
Transportation System (STS) places heavy emphasis on the
development of reusable avionics subsystems having special
features such as vehicle evaluation and reduction of ground
support for mission planning, contingency response and
verification and validation. According to the recent report
of the National Commission on Space, PIONEERING THE SPACE
FRONTIER, the concept of aerobraking for orbit transfer has
been recognized as one of the critical technologies and
recommended for demonstration projects in building the
necessary technology base for pioneering the space frontier.

As a first step in developing the necessary guidance
and control strategies for aerospace vehicles, the dynamic
equations of motion for both coplanar and noncoplanar
Aerocassisted Orbit Transfer Vehicles (AOTV’s) have been
formulated in different ways using time, altitude, or energy
as independent variable. The formulation with energy seems
to be promising. Trajectory simulations have been obtained
for these formulations, with particular emphasis on the
effect of atmospheric density scale height on the
performance of these vehicles. Simulations have shown that
there is a considerable discrepancy between the plots with
constant scale height and variable scale height. (see item
(viii) in the enclosed list of publications).

A simplified method of matched asymptotic expansions
has been developed where the common part in composite
solution is generated as a polynomial in stretched wvariable
instead of actually evaluating the same from outer solution.
This methodology has been applied to the solution of the
exact equations for three dimensional atmospheric entry
problem. Here, it has been possible to obtain explicit
relations between the constants of integration and the given
initial conditions. This in in contrast to the earlier works
where these relations led to a transcendental equation which




can only be solved by resorting to numerical methods on a
digital computer. (See item (x) in the enclosed list of
publications).

Currently, a general optimization procedure using
multiple shooting method for obtaining optimal guidance and
control laws for orbital transfer vehicles, is being
investigated, with a possibility of using the above
mentioned simplified method of matched asymptotic
expansions.

During the same period, several related research works
have been carried out and are briefly mentioned below.

1. An overview of singular perturbations and time
scales (SPaTS) in discrete control systems has been
conducted focusing in three directions of modeling, analysis
and control. The resulting tutorial-cum-survey paper has
been accepted for presentation at an invited session, at
IEEE Conference on Decision and Control, Los Angeles, CA,
December 9-11, 1987. This session is being organized and
chaired by Dr. D. S. Naidu, the co-principal investigator.

A draft copy of the paper is enclosed. (See item (v) in the
list of publications).

2. An important work in the same period is the final
preparation of the forthcoming book entitled, "SINGULAR
PERTURBATION METHODOLOGY IN CONTROL SYSTEMS, authored by Dr.
D. S. Naidu, the co-principal investigator, and being
published under IEE Control Engineering Series, by Peter
Peregrinus Limited, Stevenage Herts, England. This book is
scheduled to appear in September 1987.(See item (i) in the
enclosed list of publications).

3. As an outgrowth of earlier work on singular
perturbations and time scales in discrete control systems,
it has been found that to a zeroth order approximation,
these two approaches yield identical results. (See item
(vi) in the enclosed list of publicatioms).

4. Other works are concerned with the items (ii),
(iii), (iv), and (vii) in the list of publications.
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List of Publications

(i) D. S. Naidu, "Singular Perturbation Methodology
in Control Systems", IEE Control Engineering Series, Peter
Peregrinus Ltd., Stevenage Herts, England, 1987. (in press)

(ii) D. S. Naidu and D. B. Price, "Time scale
synthesis of a closed-loop discrete optimal control system”,
Journal of Guidance, Control, and Dynamics, 10, 1987. (in
press)

(iii) L. W. Taylor, Jr., and D. S. Naidu, "Experience
in distributed parameter modeling of the spacecraft control
laboratory experiment (SCOLE) structure”, AIAA Dynamics
Specialists Conference, Monterey, CA, April 18987.

(iv) D. S. Naidu and M. S. K. Rayalu, "Singular
perturbation method for initial value problems in two-
parameter discrete control systems"”, Int. J. Systems
Science, 18, 1987 (in press). ‘

*(v) D. S. Naidu, D. B. Price and J. L. Hibey,
"Singular perturbations and time scales in discrete control
systems-an overview", Accepted for presentation at the
Invited Session, IEEE Conference on Decision and Control,
Los Angles, CA, Dec. 9-11, 1987

*(vi) D. S. Naidu and D. B. Price, "On singular
perturbation and time scale approaches in discrete control
systems", communicated to Journal of Guidance, Control and
Dynamics, June 1987.

(vii) D. S. Naidu and D. B. Price, "Singular
perturbations and time scales in digital flight control
systems", NASA Technical Publication, Langley Research
Center, Hampton (in preparation). :

*(viii) D. S. Naidu and D. B. Price, "Impact of
atmospheric scale height on the performance of aeroassisted
orbiter transfer vehicles", Spacecraft Controls Branch,
NASA Langley Research Center, Hampton, May 1987.

(ix) D. S. Naidu and S. Sen, "A time-optimal control
algorithm for two-time scale discrete system"”, communicated
to Int. J. Control, (1987).

*(x) D. S. Naidu and D. B. Price, "On the method of
matched asymptotic expansions”, Accepted for presentation at
the SIAM Annual Meeting and 35th Anniversary, Denver, CO,
October 12-15, 1987.

*x copies enclosed
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INTRODUCTION

The theory of singular perturbations and time scales (SPATS) has been

a powerful analytical tool in the analysis and synthesis of continuous and
discrete control systems.lr2 In this technical note, we first consider a
sinqularly perturbed discrete control system. Using a singular perturba-
tion approach, outer and correction subsystems are obtained. Next, by the
application of time scale approach via block diagonalization transforma-
tions, the original system is decoupled into slow and fast subsystems. It
will be shown that to a zeroth order approximation, the singular
perturbation and time scale approaches yield equivalent results. Roughly
speaking, the zeroth-order approximation is sometimes called the first

approximation. This result is similar to a corresponding result in

continuous control systems.3




Consider a general form for linear, shift-invariant, singularly

perturbed discrete systems as2

1-
x(k+1) = A11x(k) + h jAuz(k) + B1u(k) (1a)

2i - ) A 3
h*"z(k+1) = h'A, x(k) + DA, z(k) + h'B,u(k) (1b)

0<i<1; 0<3<1

where, x(k) and z(k) are "slow” and "fast"™ state vectors of n and m dimen-

sions respectively, u(k) is an r-dimensional control wvector, h is a singu-

lar perturbation parameter, and A's and B's are matrices of appropriate
dimensionality. We formulate initial value problems with x(kx=0) = x(0) and

z(k=0) = z(0) and note that similar results can be obtained for boundary

value problems also.

The three limiting cases of Eq. (1) result in
{1) the C-model (i=0; j=0),

x(k+1) = A11x(k) + hA1zz(k) + B1u(k) (2a)

z(k+1) = A21x(k) + hAzzz(k) + Bzu(k) (2b)
where the small parameter h appears in the column of the system matrix,
(2) the R-model (i=0; j=1),

x(k+1) = A11x(k) + A1zz(k) + B1u(k) {(3a)

z(k+1) = hA21x(k) + hAzzz(k) + thu(k) (3b)

where the small parameter h appears in the row of the system matrix, and




(3) the D-model (i=1; 3=1),
x(k+1) = A11x(k) + A122(k) + B1u(k) (4a)

hz(k+1) = A21x(k) + Azzz(k) + Bzu(k) (4b)

where the small parameter h is positioned in an identical fashion to that

of the continuous systems described by differential equations. 1In this

note, we consider only the C-model of Eq. (2), but the result can be
extended to the other two models of Egs. (3) and (4) as well. The outer
(degenerate) subsystem, obtained by zeroth-order approximation (i.e., by

making h=0) of Bg. (2), is

%) (x+1) = A11x(°)(k) + B1u(°)(k) (5a)

2 ket = & xx) + B0 (x) (5b)
21 2

x(® (x=0) = x(0); 2'° (k=0) # z(0) (5¢)

Here, we note that in the process of degeneration, x(k) has retained its
initial condition x(0), whereas z(k) has lost its initial condition z(0).
In order to recover this lost initial condition, a correction subsystem is
used.2 The transformations between the original and correction variables

are

k+1 k
x (k) = x(k)/h" 7 z_(k) = z(k)/h | (6a)

u (k) = a(x)/m*t? (6b)

Using Eq. (6) in Eq. (2), the transformed system becomes,




hxc(k+1) = A11xc(k) + A12zc(k) + B1ub(k) (7a)
zc(k+1) = A21xc(k) + Aszd(k) + Bhuc(k) {7b)

The zeroth-~order approximation (h=0) of Eg. (7) becomes,

(o) (o) (o)
0 = A11xc (x) + A1ch (k) + B1uc (k) (8a)
(o) - (o) (o) (o) '
zc (k+1) A21xc (k) + A22zc (k) + 82u (k) (8b)
Rewriting Eq. (8), we get,
(o) -1 (o) (o)
xc (k) = -A11 [A122c (k) + B1uc (k)] {9a)
(o) (o) (o)
zc (k+1) = Abozc (x) + Bcouc (k) (9b)

where,

-1
Ro ™ B2 = R 2p2

-1
Bo ™ By~ ARy By

The total solution consists of an outer solution and a correction solution

as?2

(o) (1)
x(k) = k) + hx () 4 ...] , (10a)
+ hk+1 [x (O)(k) 4+ x (1)(k) + eae]
C (o4
zx) = 2 + n2 V) + .0 (10b)

ez @y + 2 My + el
C [




For the present, to simplify the analysis, we omit u(k) and its associated

functions. Then for zeroth-order approximation, the total solution is

given by2
(o)
x(k) = x (k) (11a)
z(k) = 2%V (x) + hkzc(o)(k) (11b)
=2 + zr(o)(k) (11¢)

where, zr(°)(k) = hkzc(°)(k). From By. (5c), we note that only

z(k) has lost its initial condition. Hence Bg. (11) gives

(o) (o)

z, (k=0) = z(0) - =z (0) (12)

Our current interest is only zeroth-order approximations. Thus, from

Egs. (5) and (9), we get

1€-)) (o)

x (k+1) = A11x (k) {(13a)
(o) -1 (o)
z (k+1) = A21A11 x (k+1) (13b)
or z(O)(k) = A__A -1x(°)(k) (13¢c)

271
and the correction functions as,

(o) (o)
z, (k+1) = A Zc (k), (14a)

2 (0) (o)

or

(k+1) = ha =z (k) (14b)
cor

(©) x=0) = z ®)(0)

where, 2z
r c

= z(0) - ‘z(°’(0)




= 2(0) - (o)

LESLEP
TIME SCALE APPROACH

Let us consider again the singularly perturbed system of Bq. (2). We
now use the time scale approach and obtain slow and fast subsystems to a

zeroth-order approximation.
For decoupling the original system of Eg. (2) into slow and fast
subsystems, the block diagonalization transformations relating the

decoupled variables in terms of the original variables are4

xs(k) = (Is + hED)x(k) + heEz(k) (15a)

zf(k) = Dx(k) + IfZ(k) {15b)

and transformations relating the original variables and the decoupled

variables are

x(k) = xs(k) - hEzf(k) {(16a)

z(k) = -Dx (k) + (I_ + hDE)z_(k) (16b)
s f f

Where Ig(nxn) and If(mxm) are unity matrices and D(mxn) and E(nxm)

satisfy Riccati-type algebraic equations,

hAzzD - DA11 + hDA12D - A21 =0 . (17a)

hE(A22 + DA12) - (A11 - hA12D)E + A12 = 0 (17b)

whose iterative solutions start with initial values of Dj =
-A21A11‘1 and E; = A11'1A12. By using transformations given

by Bg. (15) in Eq. (2), we get the decoupled slow and fast subsystems as,




x (k41) = A x (k) + B u(k) (18a)
s s s s
zf(k+1) = hAfzf(k) + Bfu(k) {18b)
where, As = A11 - hA12D; Af = A22 + DA12
B = (I <+ hED)B. + hEB
s 1 2

Bf = DB1 + B2

For zeroth-order approximation,3 we get,

-1 -1

50 1

D, = ~Aj,A,, E, = Ay, A, (19a)
-1

Ao = 2y? Beo = Byp = BAA, A, (19b)
-1

B = B_; Bfo = 32 - A21A11 31 (19¢)

Using Eq. (19) in Eq. (16) and (18), we get (omitting input for
simplicity),

x(k) = xs(o)(k) (20a)

-1 (o) (o)

z(k) = A2 X, (k) + zg (k) (20b)

where xg(0)(k) and zg(0)(k) satisfy

(o) (o)

xg (k+1) = A11xs (k) (21a)

(o) (o)
zf (k+1) = hAfozf (k) (21b)

Similarly, using Bg. (19) in Bg. (15), we obtain,

L
—
x
[]
o
"

x(0); (22a)

(o)

z, ° (k=0) = z(0) - ~1(0) (22b)

LYLT




Comparing the subsystems of Eqs. (13) and (14) and the solution of Bg. (11)
obtained by using the singular perturbation approach with the corresponding
subsystems of Eg. (21) and the solution of Eq. (20), we find that they

satisfy the same equations with the same initial conditions. Hence,

{o) (o (o) -1 (o)

x (k) = xg 2k); z (k) = 1\21A11 x, (k) (23a)
(o) (o)

z_ (k) = z, (k) Aco = Afo (23b)

Thus, we have shown that for a zeroth-order approximation, both singular
perturbation and time scale approaches give identical results. Similar
results can be established for other types of discrete systems )

characterized by Egs. (3) and (4).

CONCLUSION

In this note, we have demonstrated for a zeroth-order approximation
the equivalence of the subsystems obtained by the singular perturbation and
time scale approaches. This result is akin to that in the singularly
perturbed continuous systems. It has been seen that such an equivalence
does exist for a first-order approximation also, the details of which are

omitted due to the lengthy and cumbersome nature of the derivations.
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Abstract:

This paper overviews recent developments in the theory
of singular perturbations and time scales (SFTS) in the
discrete control systems. The focus is in three directions
of modeling, analysis and control. First, we review sources
of discrete models and the effect of discretizing interval
on the modeling. The analysis of two—-time scale systems
brings out typical charactetistic features of SF18. In
controlling the two—-time scale systems, we address the
important issue of multirate sampling. The bibliography
contains over 100 titles. '

1. INTRODUCTION

The dynamics of many control systems is described by
high order differential equations. However, the behaviour
in governed by a few dominant parameters, a relatively minor
role being played by the remaining parameters such as small
time constants, masses, moments of inertia, inductances, and
capacitances. The presence of these "parasitic" parameters
is often the source for the increased order and the
"stiffness" of the system. The "curse" of the
dimensionality coupled with stiffness poses formidable
computational complexities for the analysis and control of
such large systems. The methodology of singular
perturbations and time scales (SFTS) is a "qgift" to control
engineers. As such it is very desirable to formulate many
control problems to fit into the framework of the
mathematical theory of SFPTS which has a rich literature (
Van Dyke &4, Wasow 65, Cole 68, Butuzov et. el., 70, Eckhaus
73, 79, Nayfeh 73, B1, Vasileva and Butuzov 73, 78, Nayfeh
and Mook 79, Eckhaus and de Jager 82, Chang and Howes 84,
Smith 85). The theory of SFTS in continuous control systems
has attained a reasonable level of maturity and is well
documeted (kKokotoviec and Ferkins 72, D'Malley 74, Genesio
and Milanese 746, Kokotovic et. el., 76, 86, Ardema 83,
Kokotoviec B4, BS, Saksena et. el., B4, Naidu 87).

The methodology of SFTS has an impressive record of
applications in a wide spectrum of fields such as circuits
(Sastry and Desocer 81), networks (Sannuti 81),
electrostatics (Abraham—Shrauner 74), electromaagnetics
(Seshadri 76), electrical mechines (Zaid et. el., 82), power
systemse (Chow B2), semiconductors (Markowich and Ringhoffer
84), fluid mechanics (Van Dyke 64), structural mechanics
(Flzherty and OD'Malley 8B2), soil mechanics (Dicker and Eabu
74), flight mechanics (Ardema 77), celestial mechanics
(Verhulst 75), geophysics (Carrier 70), chemistry (Cohen
74, thermodynamics (Caoper 735), nuclear reactor dynamics
(Reddy and Sannuti 75), accoustics (Einaudi 69),
oceanagraphy (Ruijter 79), biology (Carpenter 77),
biochemistry (Heineken et. el., 67), eloleay (Naidu and
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Rajagopalan 79), lasers (Eckhaus et. el., B5), and robotics
(Chernousko and Shamaev 83).

Diecrete systems are very much prevelent in science and
engineering. There are three sources of discrete models
described by difference equations containing several
parameters (Dorato and Levis 71). The first source is
digital simulation, where ordinary differntial equatione are
approximated by the corresponding difference equations
(Hildebrand 68, Abrahamsson et. el., 74, Hemker and Miller
7?9, Miranker B80). The study of sampled-data control systems
and computer—-based adaptive control systems leads in a
natural way to another source of discrete-time models (kKuo
g80). Finally, many economic, biological and sociological
systems are represented by discrete models (Cadzow 72). 1In
spite of the fact that the digital control of systems with
widely separated eigenvalues was first considered by
stineman (65), the field of singular perturbations and time
scales in difference equations and its applications to
diecrete control systems is of recent orgin only (Comstock
and Hsiao 76, Locatelli and Schiavoni 76, Hoppensteadt and
Miranker 77, Naidu 77, Vasileva and Faminskaya 77, Javid 79,
Reinhardt 79, Fhillips 80, Rajagopalan and Naidu B0, Atluri
and Kao B1l, Elankenship B1).

This paper overviews these recent developments in the
theory of SFTS in difference equations and discrete control
systems. The focus is on three directions of modelling,
analysis and control.

2. MODELING IN SPTS SYSTEMS:

2.1. Source 1: Fure Difference Eguations:

Consider a general linear, shift—-invariant difference
equation with small parametere occuring at the right end,
left end or both ends. Then the state variable model
becomes (Syrcos and Sannuti B3, Naidu and Rao 81, 82),

)‘(g(k*’l) = A;;)‘(;(k) + h"—"A;zxz(k) + E,,u(k) (1a)
h24 o (k+1) = h3A2:%1 (k) + hAzaxz(k) + Baulk) (ib)
0 < i < 13 0 < 3 <1

where, xi(k) and x=(k) are "slow" and "fast" state vectors
of n, and n> dimensions respectively, u(k) is an r
dimensional control vector, h is singular perturbation
parameter and A's and B’'s are matrices of appropriate
dimensionality.

The three limiting cases of (1) result in

(i) the C-model (i=0; j=0),




e (k+1) = Agaxalk) + hAzada(k) + Byu(k) (2a)
Mo l(k+1l) = Az:1x1 (k) + hAzax=z2(k) + Baul(k) (2b)

where the small parameter h appears in the column of the
system matrix,

(ii) the R-model (i=0; j=1),

Xa (i+1)

Az (k) + Aana(k) + Byulk) (3a)

}(2(}-‘1"'1)

]

RAzaxs (k) + hAzzxz2(k) + Bau(k) (Zb)

where the small parameter h appears in the row of the system
matrix, and

(iii) the D-model (i=1; j=1),

K (k+1) = A% (k) + Ayaxz(k) + Bu(k) (4a)
hia(k+1l) = Azaxy (k) + Azanz(k) + Baulk) (4b)
where the small parameter h is positioned in an identical

fashion to that of the continuous systems described by

differential equations. Note: The replacement of xz(k) by
hixs (k) in model (3) will result in model (2).

~

2.2 Source 11: Discrete Modelling of Continous Systems:

Here either numerical solution or sampling of
singularly perturbed continuous systems will result in
discrete models. Consider the singularly perturbed
continuous system as

®a () A (t) + Aj=zxz(t) + Eaul(t) (Sa)
h)(z(t) = Az xi (L) + Azz)(z(t) + BzU(t) (Sb)
Applying the block-diagonalization transformations (Fhillips
80), the original variables x,(t) and xz(t) are expressed in
terms of the decoupled variables x4 (t) and xe(t) as
Ha(t) = Taxa(t) = hMue(t) (6a)
Ma(t) = —Lyua(t) + (Ie+hlM)xe (1) (6b)

and the decoupled variables xa(t) and xe(t) are obtained in
terms of the original variables :x,(t) and x=(t) as

Malt) (Ia+thHL) s (£) +hMiz (t) (7&)

e (t) Lixa (t) + Iexa(t) (7b)




where L and M satisfy
Azs + hLA:s — Azz2L — hLAzzL = 0 (Ba)
Agz - h(Ag;"A;zL)M + M(A::*‘hLA‘Q) = O (8b>

Using (6) and (7) to the continuous system (5) with a
sample—hold device, we get a discrete model, which depends
critically on the sampling interval T (Kando B86). If we
choose the fast sampling T¢ = h or the slow sampling Te =
1[1/h3T¢ (where [1/h] is the largest integer < 1/h), we get
fast or slow sampling model. In a particular case, when T, =
h, we get the fast sampling model as

e (n+1l) = (Iaq+hDii1)xs(n) + hDizx=(n) + hDsuln) (?a)
)‘(2(!’)"’1) = Dz;)’(;(n) + Dzz:‘(z(n) + D:u(n) (9b)

where n denotes the fast sampling instant. Similarly, if Ta
= 1, we obtain the slow sampling model as

wa(k+l) = Ezi133 (k) + hEiazxz(k) + Eju(k) (10a)
Ra(k+1l) = Ezaxa (k) + hEzzxz(k) + Ezu(k) (10b)
where k represents the slow sampling point, and n = kl[1/h].

Also, the D's and E's are related with A's, B's, L and M.
Remarks:

(i) the fast sampling model (%) can be viewed as the
discrete—-time analog (either by exact calculation using

exponential matrix or by using Euler approximation) of the
continuous system

a (b)) = hAaxa1 (t7) 4+ hAzx=z2(E") + hBiu(t’) (11a)

a2t )

Az (") + Azzi=2(t’) + Bau(t’) (11ib)

which itself is obtained from the continuous system (5)
using stretching transformation t° = t/h. It is usually
said that the singularly continuous perturbed systems (5)
and (10) are the slow time scale (t) and the fast time scale
(t’) versions respectively.

(ii) the slow sampling model (10) is the same as the
state space model (2) obtained from the singularly perturbed
difference equations (Comstock and Hsio 76, Naidu and Rao
81). Thus by discretizing the singularly perturbed
continucus system (5) with elow and fast sampling rates, we
get two different discrete-time models.

Time Scale Froperty




f

The slow sampling model (10) possesses the two—-time
scale property, if the largest eigenvalue of Es is much
smaller than the smallest eigenvalue of Ea, that is
(Fhillips 80),

max | (Eg)! << min | (Ea)! (12a)
or 1 ¥ ipal 7 ceeiPmri ¥ Praerl 7 coeiprien=z! (12b)
where the approximate values for E. and E¢ are
Ee = Eiy + O(h) (12a)
E¢ = h(Ezz = Ei1172*Eaz) + D(h=) (12b)
Simialarly, we can obtain the condition for the fast

sampling model (9) to exhibit the two-time scale property
(Blankenship B1, and Kando Bé&).

3. ANALYSIS IN SPTS SYSTEMS:

In this section, we analyre the systems using sinqgular
perturbation and time—-scale approaches, and show that the
two approaches give identical results.

We first consider a singularly perturbed discrete
control system. Using singular perturbation approach, outer
and correction subsystems are obtained. Next, by the
application of time scale approach via block diagonalization
transformations, the original system is decoupled into slow
and fast subsystems. To a zeroth order approximation, the
singular perturbation and time scale approaches yield
equivalent results. This result is similar to a
corresponding result in continuous control systems (Mahmoud
and Singh 81).

3.1 Slow Sampling Model: Intial Value Froblems (IVF)

J3.1.1 Singular Ferturbation Approach

Consider the sinqularly perturbed discrete system (2).
We formulate initial value problem and note that similar
result can be obtained for boundary value problems also.

The outer (degenerate) subsystem, obtained by zeroth
order approximation (i.e., by making h=0) of (2), is

K €@ (k+1). ARa1aX3 =2 (k) + Byuc=? (k) (14a)

X2 ¢®? (k+1)

Az P2 (k) + Bauc<e? (k) (14b)

g 22 (k=0) = x(0); Xz ¢ (k=0) = x=2(0) (14c)




Here, we note that in the process of degeneration, x, (k) has
retained its initial condition x, (0), whereas xz(k) has lost
its initial condition %=2(0). The boundary layer is said to
exist at k=0. In order to recover this lost initial
condition, a correction subsystem is used (Naidu and Rao
B3). The transformations between the original and
correction variables are (assuming no inputs for
simplicity),

Rae (k) = xa(k)/hx*3; oo (k) = xa(k)/h* (15)
Using (15) in (2), the transformed system becomes,

h)(;c(k"’l) = Ag;)(;:("i) + Agg}(zc(k) (16a)

)(zg(k"'l) Az;X;c(k) + A:zng(k) (16b)

The zeroth order approximation (h=0) of (1%) becomes,
© = A;g)‘(;c‘a’ (k) + A;:)‘(zg‘o’ (k) (17a)

Hac P2 (k+1) = Azidie @’ (k) + Azadze 2’ (k) (17b)

Rewriting (17), we get,

Kae @ (k) = -A11 72 [A =222 (k)] (18a)
Noe @2 (k+1) = Acalze ¢=? (k) (18b)
where, Aco = Azz = Az181:"*A1=;

The total solution consists of outer solution and correction
solution as

¥a(k) = [xa®> (k) + hy,y¢22(k) + ...

+hee*3lyn, o> (k) + 322 (k) + ... (19a)
Halk) = xz¢@> (k) + h¥x2¢32 (k) + ...1

+h¥lxze @’ (k) + Hac (k) + ...1] (19b)

For zeroth order approximation, the total solution is given
by

a (k) = 42 (k) 20a)
Kal(k) = X222 (k) + h¥%xac @ (k) (20b)
= X2 (k) + xz ‘= (k) (20c)

where, sz« (k) = h*xz2c=¢®>(k). From (14c), we note that




only z(k) has lost its initial condition. Hence (20)
gives xaec ‘@’ (k=0) = x2(0) - xz¢=*(0),

Our current interest is only zeroth order approximations.
Thus, from (14) and (1B), we get

R 22 (k+1) = A1, = (k) (21a)
X:‘g) (k+1) = Angg;-i}(g‘D’ (k+1) (21b)
or X2 (k) = AziAR1" %, =2 (k) (21c)

and the correction functions as,

Moae @2 (k+1)

Aco¥=e 22 (1) (22a)

or Mz~ °?(k+l1)

hAcoXz~ 2 (k) 22b)

where, xa.- ‘=’ (k=0) = xgc ‘=’ ()

¥2(0) — xz =@ (0)

>:-_-;(0) - Ang;g—".\(;(C))

J3.1.2 Time Scale Approach:

Let us consider again the sinqularly perturbed system
(2). We now use the time scale approach and obtain slow
and fast subsystems to a zeroth order approximation.

For decoupling the original system (2) into slow and
fast subsystems, the block diagonalization transformations
relating the decoupled variables in terms of the original
variables are (Fhillips 80, Kando and Iwazumi B3),

Ma (k)

= (Ia + hML)3. (k) + hMy= (k) (23a)
Nelk) = Lyaag (k) + Iexa(k) (23b)

and transformations relating the original variables and the
decoupled variables are

Ka (k) = Iadal(k) — hMue (k) (24a)

wa=(k)

“Lya (k) + (Ie + hLM):e (k) (24b)

where L(nixxn=) and M(nixnz) satisfy Riccati type algebraic
equations,

hAzzL - LA3a + hLA;zL - Az; = 0 (25a)

hM(Azz + LA1=) — (Ass — hA1=L)M + hAs=z = O (25b)




whose iterative solutions start with initial values of L, =

-A=2:fA31:-2 and M, = hA117*A1a. By using transformations (23)

in (2), we get the decoupled slow and fast subsystems as,
Halk+1l) = Aara(k) + Baullk) (26a)

He (+1)

hAexe (k) + Beu(k) (26b)

where, Aa = A,1 - hA,=zL:

Ba (Ia + WML)B, + hMBzg B¢ = LB, + B=

For zeroth order approximation, we get,

lo = -Ang;‘-‘; Mo = O; (27a)
AaD = Aia} Aso = Azz — Az1R13:7*As2; (27b)
Bao = Bg§ Beew = Bz ~-A>3:A1" 2R, (27c)

Using (27) in (24) and (26), we get (omitting input for
simplicity),

#a (k) = Xaa (k) (28a)
2(k) = Az21A117  aa k) + xsolk) (28b)
where MNeol(k) and xsalk) satisfy

Xao (k+l) = As;i1Maa (k) 29a)

Hea (K+1) hAssea (1) (Z9b)

Similarly, using (27) in (23), we obtain,

Naa (Kk=0) %1 (0); (30a)

Neo (k=0) = M=2(0) - Az;A;;“x;(O) (30b)

Comparing the subsystems (21) and (22) and the solution (20)
cbtained by using the singular perturbation approach with
the corresponding subsystems (29) and the solution (28), we
find that they satisfy the same equations with the same

initial conditions. Hence,

X122 (k) = Naol(kl)l: Xz (k) = —Az1A331 e (k) (F1a)
Xar- 2’ (k) = Xeal(k) Aco = Aso (Z1b)
Thus, we have shown that for a zeroth order approximation,

both sinqular perturbation and time scale approaches give
identical results.




Thus, we have found that for a zeroth order
approximation the equivalence of the subsystems obtained by
the sinqular perturbation and time scale approaches. This
result is akin to that in the singularly perturbed
continuous systems. It has been seen that such an
equivalence does exist for first and high order
approximations also (Kando Bé6).

In the slow sampling model, the solution can be
expressed as a combination of discrete-time slow and fast
subsystems. Here, the two-time scale property of the
discrete-time itself, and the lower sampling rate are
assumed. However, it is noted that the fast part is treated
as dead—-beat. As a result, the slow sampling model (9) is
obtained from the continuous system (5), there is bound to

be performance degradation between the two systems over the
intial interval only.

3.2 PBoundary Value Froblems (BVF):

The analysis of BVF is similar to that of IVP, with few
differences which are described below. For both C- or R-
models, if the boundary conditions are x.(N) and xz(0), then
the boundary layer still occur at k=0, and the total series
solution still remains the same as (18) (Naidu and Rao 81,
82, B3a,b, Rao and Naidu 81). However, the auxiliary
condtions are

w2 (E=N) = x,(N); Xae (k=0) = xz(0) — xz = (0) (32)

For the D—maodel, if the boundary condtions are x, (Q)
and xz2(N), the total series solution is given by

Ra (k) = [x¢®2 (k) + hxa €22 (k) + ...]

+hN—k+1[y > (k) + Xx,c22(k) + ...] (3za)
%2(k) = %292 (k) + hx=2? (k) + ...1

+hN=%[x2c €®2 (k) + X2e 22 (k) + ...) (33b)

and the boundary layer is said to exist at the final point k
= N.

3.3 Fast Sampling Model:

Consider the fast-sampling model (10), which is more
exact model than the Euler approximation model of Elankeship
(B1) and Rajagopalan and Naidu (B1).

The eigenvalues of the slow and fast parts of the fast-—
sampling model (10) are given by

p(Da) = p{I+h(D,1,-D,=2L)2 (34a)
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p(D¢) = p{Dza+hlLD,=) (34b)

where L is the dichotomic solution of a nonlinear algebraic
Riccati egquation (NARE),

Di= - Dzl + L(I+hD,::) - hiDs;=zL = O (35)

It is noted that even if the continuous-time system (5)
possesses the two-time scale property, i.e.,

mayx iplAg)i << min ip(Ae) | (36a)

the fast sampling model (10) does not necessarily satisfy
its two-time scale property, i.e.,

min p(Da)! >> max 1p(D¢) ! (36b)
This is in contrast to the slow-sampling model (2) or (10),
which preserves its two-time scale property in the

discretization process.

Using & boundary layer method, the solutions of (10)
are expressed as

xa(n,h) = Xa(t,h) + hxic(n,h), t = hn, (37a)
=zlny,h) = Xz2(t,h) + xa2c(ngh), (37b)
uingyah) + Ut h) +tuc(ng,h) (37c)

where X,(t,h), X=(t,h) and U(t,h) correspond to reduced
system of the continuous system (5).

Thus the solution (37) of (10) can be expressed as a
hybrid combination of the continuous slow part which
dominates the system behaviour over whole interval, and the
discrete—time fast part which dominates over the intial time
only. Thus, the analysis and desian are performed
essentially in the continuous—-time domain.

3.4 Steady State Analysis

An alternative approach to deriving the slow and fast
subsystems is based on quasi-steady state concepts
(Badreddin 8Z, Mahmoud 82, Tran and Sawan 83a,b, B4a,b,c).
For a stable linear discrete system having the time-scale
property, the fast modes corresponding to the eigenvalues
centered around the origin, are important only during the
first few discrete instants (transient period). After that
period, they are negligible and the slow modes dominate the
behaviour of the discrete systems.
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Neglecting the effects of fast modee is expressed
formally by letting x=(k+l1l) = x2(k). Then, we get,

e lk+1) = Azaxa (k) + Apax=(k) + Byu(k) (ZBa)
X2 (k) = Azixa (K) + Azai=(k) + Baul(k) (Z8b)
or x=(k) = (le—Az=2)"2LAz13, (k) + Bautk)] (3Bc)
where Aia Az A, hA: 2

Az:  Az= ) Az,  hAz2

Rearranging (3B), we get the slow subsystem as

Ya(ktl) = Agia(k) + Bgua(k) . 39)
where, %ai1(k) = xa(k), x2(k) and ulk) are the slow components
of the corresponding variables in (2), and

AD = A1l + A12(I1¢-Az2) A2,

Bo By + A:12(I¢—-A=z) "Bz

The fast subsystem is obtained by making the assumption that
Ha (k) = xa(k) = constant and u=z(k+l) = xz2(k). From (2b) and
(38c)y, we get the fast subsystem as,

Xel{k+l) = A=1xXe (k) + Boue (k) (40)

where, xelk) = x2(k) - xHa(k): uvelk) = ulk) — uvalk);

SJea  Control of SFTS systems

The traditional control problems such as state feedback
control design problem, eigenvalue assignment problem,
observer design problem, are equally applicable to discrete-
time systems with SFTS (Fhillips 80, Mahmoud B82a,b,c,
Mahmoud and Singh 81, 84, 83, Mahmoud et. el., 85, Bé,
Fernando and Nicholson 83a,b, Kando and Iwazumi B3a,b, 84,
85, Tran and Sawan B3a,b, B4a,b,c, Khorasani and Azim-
Sadjadi 87). However, we will concentrate on the optimal
control of these systems.

S3.5.1 Open—-lLoop Optimal Control

Consider the slow-sampling model (2) having two-time
scale character. The performance index to be minimized is

N-1
J = y(N)Sy(N) + 0.5 [y(k)By (k) + uw{k)Ru(k)] (41)
O




where y(k) = [xs(k), %x=2(k)1; S, and @ are real, positive
semidefinite symmetric matrices of (n,+nz) dimensions, K is
a real, positive definite matrix of order rxxr, N is a fixed
integer indicating the terminal or final value of time.

Using the results of optimal control theory (Sage and
White 77), the state [x,;(k), x=(k)] and costate [p; (k),

p=(k)] equations are obtained as

X;(k"’l) = A;g)‘(;(k) + hAgz}(z(k) - W;;p;(k+1) - hwgzpz(k"’l)

Xz(k"‘l) Az;)(;(k) + hA:z:‘(z(k) - w;:pg(k""l) - hwzzpz(l'»""l)
p;(l'-’.) = @;;)‘(1(‘5) + hQ;sz(k) + A;;p;(k"‘l) + hAzgpz(k""l)
pz(k) = Qz;)‘(;(k) + thz)(z(l\.) + Agzp;(k"‘l) + hAzzp:(L+1)

(4%)
and the optimal control is given by

u(k) = —R-2[Bips (k+1) +hBapz(k+1)] (43)

where, Wysy = BJsR™*E,; i,j = 1,2
The Z2(n,+nz) order two-point boundary value problem (TFBVF)
represented by (42) which is in the singularly perturbed
structure, is to be solved using the boundary conditions,
X1 (0)y, 32(0), ps(N) and p=(N).
The series representations for (41) are given by

Xa(k) = Maalk) + h¥*2x,;, (k) + hNTR*21x, 6 (k)

Malk) = oo (k) + h%ua, (k) + hN—&*1 . (k) (44)

P1(k) = piolk) + h¥*ip,,(k) + hN—k*1p, . (k)

P=2(k) = pac (k) + h**2pz, (k) + hN"%po, (k)
where, ®io(k), X2a({k), pirolk), and p=o(k) correspond to the
outer solution, x:4(k), %x2s4(k), p1sa(k)y and p=zis (k)
correspond to the intial boundary layer correction, and
Nase k), sa2e(k), prelk), and p=¢ (k) correspond tc the final
boundary layer correcticn. The details are found in Kando
and Iwazumi (83b), Rajagopalan and Naidu (81}, Naidu and Rao

(BS5a), Raoc and Naidu (B2).

2.59.2 Closed-Loop Optimal Control

In this section, a two time scale discrete control
system is considered. The closed-loop optimal linear
quadratic requlator for the system requires solution of a
full-order algebraic Riccati equation. Alternatively, the
original system is decomposed into reduced-order slow and




fast subsytems. The closed-loop optimal control of the
subsystems requires the solution of two algebraic Riccati
equations of order lower than that required for the full-
order system. A composite, closed-loop suboptimeal control
is formed from the sum of the slow and fast feedbaclk aoptimal
controle. The main advantage of the method is a
concsiderable reduction in the overall computational
requirements for the closed-loop optimal control of digital
systems (Naidu 77, Naidu and Rajagopalan 81, Rac and Naidu
82, Naidu and Rao B4, BSa, Othman et. et., 85, Kando Bé,
Naidu and Frice 86).

4,2.1 DOptimal Control of Original System

Consider the linear discrete system (2) having two—-time
scale character

The performance inde:x to be minimized is

Jd = LyT(k) By (k) + uT(k)Ru(k)1 (45)
- k=0

The closed-loop optimal control is aivern by (Sage and
White 1977),

u(k) = -R™*BYFLI + BR™*EBTFI—*Ay (k) (46)

where F, of order {(n,+nz)x(n.+n=), is the positive definite
symmetric solution of matrix algebraic Riccati equation

F = ATFLI + BR™*BTF1—A + [ (47)
The closed-loop optimal system is qiven by
y(k+1) = (A — BR)y (k) (48)
where, F = R™*B7FLI + BR™*BTFI—*A

Instead of tackling the original regulator problem
described by (2) and (45) directly, we decompose it
appropriately intoc two regulator problems for slow and fast
subsystems. For this, we first need to separate the
original performance index into the sum of two performance
indices for slow and fast subsytems.

The original performance index (45) has to be
represented as the sum of the performance indices of the
slow and fast subsytems. Using the transformation (6)
between the original state variables, [x; (k) and x=(k)1, and
the subsystem variables, [xa(k) and xe(k) 1, in (43), and
using ue (k) =ue(k) = ulk), we get

J

[aT (k) Daalia(k) + 2XeT(k)Qeexe (k) + UaT (k) Raua (1)




14

Hatl (E)PRaeXs (k) + XeT (K Dsaralk) + UeT(K)Reue (KX (4%)

where, Qee; Ca<y Q¢ay and 0[is are related to O,y via L and
M.

Since J has to be represented as the sum of Ja and J.,
we need to neglect Qa¢ and B:iq. Then

Ja = [XaT (k) QaaXe (k) + UaT(k)Raua (k)] (S0a)
Je = e T (k) BeeXe (k) + UeT(E)Reue (k)] (SOb)

As we have neglected Ca¢ and Dsea, it certainly introduces an
error, in that J will not be equal to the sum of J. and Je.

To affect this, we need to readjust Qee and B¢ (Othman et.
el., 8.

As this is simply a design or synthesis approach, we
can first select the performance indices of the subsystems
and then formulate the original performance index. Thus, if

Ja = [NaT (k) Qantal{k) + uaT(K)Raqua (k)] (51)
Je = [xe T (K)BeeXe (k) + UueT(KIRsue (k)1 (32>
Using the transformation (7) between the subsystem variables
Xa(k) and x¢(k) and the original system variables x;: (k) and

x=2(k), we get

Jd = J-"‘\lf

[LyT(E)By (k) + uT(k)Ru(k)] (53)
where, 8 1is related to Quae and B¢« via L and M.

Thus, in (51)-(53), we first select flaa, B«¢, Ra and
R¢, and then using L, and M, we get & and R. Here, we are
able to decouple J and J. and J¢ exactly without any
approximation. But the original J is dependent on L and M,
the decoupling matrices, which may not be of practical
advantage.

4.2.2 Dptimal Control of Subsystems:

Using the transformation (6), we decompose the
original system into slow and fast subsystems as

Ka{k+1l) = Aaxal(k) + Baua (k) (34)

e (k+1) Aee (k) + Beue (k) (55)

We now try to optimize these slow and fast subsystems
with respect to their corresponding performance indices
(S0a) and (S50b) respectively. The slow regulator problem




consists of the slow subsytem (S5%) and the performance inde:x
(50a). The fast regulator problem consists of the fast
subsystem and the performance index (S0b). For convenience,
we write Dae = Uai and Bee = Be.

The optimal feedback control of the slow subsytem is
given by

Ua (k) = "Raq~'Ba"Falla + BaRa 'BaTFal *Asia (k) (56)

where P. is a positive definite symmetric solution of a
reduced order algebraic Riccati equation,

Fa = AuPalla + BaRua™*B."Fal1 " 2A, + 0Oa (S7)

Similarly, the optimal feedback control of the fast subsytem
becomes

Ue (k) = —Re 2BeTFelle + BeRe 2B TP 2Acxe (k) (S58)

where F, is a positive definite symmet?ic solution of the
reduced order algebraic Riccati equation

Fe = AeFelle + BeRe 2R TPL.1 A, + B¢ (S59)
Rewriting the control laws (55) and (57) as
Um (k) = —Fgaialk) (60)

Le (k)

—Fexe (k) (61)

We note that the control laws (56) and (5SB) are optimal with
respect to the slow and fast subsystems (S4) and (S5) only.
But, it is computationally simpler to determine these
controls laws than the optimal control law (44) of the
original system Kando and Iwazumi 83).

4.2.3 Composite Control:

The composite control is formulated as the sum of the
slow and fast feedback controls given by (56) and (58).
That is

Ue (k) = ua (k) + ue (k)
= —[Faitalk) + Fexe(k)] (62)

Using the transformation (7) between the slow and fast
variables and the original variables in (62), we get

Uc (k) = —[Fac (k) + Fecik)] = =Foy (k) (63}

where, Fae and F¢c- are related with Fc via L and M.
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Using the composite control (63) in the original systeh,

ye (k+1) = (A-BF2)yc (k) (&48)

It 1s known that minimizing the original performance inde:
(44) with respect to the composite system (64) results in
the suboptimal performance index (Dthman et. el., 1985),

Je = 0.5yT(O)FPy (O) (65)

where Fc is the positive definite symmetric solution of
. discrete Lyapunov equation

Fe = (A~BF) TR (A-BF) + B + #gTRF= (66)

In an entirely different approach to the closed-loop
optimal control of discrete systems possessing two-time
scale character, the Riccati coefficient matrix F(k) is
partitioned into singularly perturbed structure and the
analysis is carried out on the Riccati equation (Naidu 77,
Naidu and Rajagopalan Bl, Kimura B3, Litkouhi 83, Litkouhi
and Khalil 84, 85, Naidu and Rao B4, B5a, Kando and Iwazumi
B83b, Naidu and FPrice B6, Kando B6). The theory of SFTS in
adaptive systems and the optimal control of stochastic
systems is considered by Delebeque and 8uadrat (Bl), Iocannou
and Kokotovic 82, Raoc and Naidu (84)

=

5. Multirate Requlator Froblem:

Singularly perturbed systems exhibit slow and fast
behaviors. From an intuitive point of view, the measurement
and control of the slow variables can be done at lower
sampling rates in comparison with the fast variables
(Litkouhi 83, Litkouhi and kKhalil 84, BS, Kando Bé, Kando
and Iwazumi B6).

Consider the singularly perturbed continuous system (5)
and the performance index (45). By the process of
decomposition and discretization, the continuous system (5)
is transformed to fast sampling model (10) or the slow
sampling model (%) depending upon the discretizing interval.
Similarly, the performance index (43) can be transformed.
Using the slow (fast) sampling model (%) ((10)), and the
corresponding performance index, we arrive at the slow
(fast) sampling regulator problems, which are solved
i ndependently.

The slow sampling regulator problem is solved by
decomposing it into slow and fast subproblems, where the
fast subproblem exhibite a dead-beat behavior. Similarly,
the fast sampling regulator problem is decomposed into slow
and fast subproblems, where the slow subproblem, of
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continuous-time nature, dominates the system behavior over
the whole interval.

In the singularly perturbed continuous system, x.(t,h)
and x=(t,h) possess slow and fast behaviors respectively.
Thus, the slow sampling rate (Ta) can be tolerated for
measurement of the slow variable x,(t,h), i.e., xi(t,h) can
be measured at slow rate t = kTa (k=1,2,..). 0On the other
hand, x=z(t,h) is measured at the fast rate t = nT, =
k[1/hlT,.

By combining the controls of the slow subproblem of the
slow sampling requlator and the fast subproblem of the fast
sampling requlator, the multirate control is expressed as

us(nNTe,h) = ua®™ (k) + ue®t(n)

GixXs (kTqsh) + B2x1(nTe,h) + Gaxx2(nTeh? (67)

Here, the states x,;(kTa,h) and x2(nT¢,h) are measurable.
But, since the state X, (nT¢«,h) can’'t be measured between
kLE1/hlTe € NTe < (k+1)L1/h1T7,, the above state feedback
control can‘'t be implemented. This difficulty is overcome
by using the estimates of x.(nT4,h). Finally, the multirate
control is obtained as (Litkouhi and Khalil B85, kando B6),

u=(nT4=,h) = G43~(;(kT-,h) + Gsxz(an,h) (67)

Figure shows the basic ideas behind the multirate control.

S. Conclusions:

In thie paper we tried to overview the recent
developments in the theory of singular perturbations and
time scales (SFTS) in discrete control systems. The focus
has been in three directions of modeling, analysis and
control. In modeling, we reviewed sources of singualarly
perturbed difference equations in their equivalent state
space representations. Depending on the discretizing
interval, we arrive at slow-sampling model and fast—-sampling
model. The analysis of two—time scale systems brought out
the characteristic features of order reduction, boundary
layer phenomena, stetching transformations, and correction
series. In controlling the two—-time scale systems, we
addressed open—loop and closed-loop optimal control
problems, highlighting the important issue of multirate
sampling.
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NOMENCLATURE

AOTV : aerocassisted orbital transfer vehicle
Co ! drag coefficient

CL : 1ift coefficient

g : acceleration of gravity

GEO : geosynchronous Earth orbit

h = (r-rs)/rs

hs : reference altitude

h : altitude

constant scale height

HEO : high Earth orbit

m : vehicle mass

OTV : orbital transfer vehicle

r : radial distance from Earth’s center
Is : reference radius

ri : radius of HEO

r2 : radius of LEO

R radius of spherical atmosphere
S effective vehicle surface area
t time

\ vehicle speed

Y flight path angle

av : impulsive change in V

}1 : gravitational constant of Earth
P : atmospheric density

P(rs) : value of P at rs

F(hs) : value of P at hs




1. INTRODUCTION

The Space Transportation System (STS) is presently
used for delivering payloads to Low Earth Orbit (LEO).
Several of these payloads are transferred to High Earth
Orbit (HEO), by expendable upper stage rockets that use
either solid or liquid propellants. In order to support the
deployment of a large number of satellites in Geosynchronous
Earth Orbit (GEO) in an economical manner and to ultimately
provide manned service, a reusable‘orbital:transportation
system is required. .The Orbital Transfer Vehicle (OTV) is
intended to transfer payloads from LEO to GEO and to return

to LEO.

Since the concept of aeromaneuvering was first
introduced about two decades agol, numerous studies have
shown that performance advantages in terms of larger
payloads, reduction in expenditure of energy and
reusability, can be achieved using aerodynamic forces
generated through atmospheric pass to get necessary orbital
changes (Both apogee and inclination) on the return leg, as
compared with all propulsive orbital changes2. The concept
of Aerocassisted Orbital Transfer Vehicle (AOTV), opens new
mission opportunities, especially with regard to the

initiation of a permanent space station.

Further, in a recent report of the National Commission

on Space, PIONEERING THE SPACE FRONTIER, the concept of

2




aerobraking for orbital transfer has been recognized as one
of the seven critical technologies and recommended for
demonstration projects in building the necessary technology
base for pioneering the space frontier3. Broadly speaking,
the two kinds of orbital transfer are coplanar orbital

transfert and orbital transfer with plane change5.
2. COPLANAR ORBITAL TRANSFER

The coplanér transfer is from HEO to LEO using
atmosphere to decrease the energy and thereby decréase the
velocity of the.vehicle4. Here, 1ift modulation is the only
means of controlling the flight path in the atmosphere,
propulsion being used only outside the atmosphere. The
application of the thrust produces impulsive velocity
changes ( AV’s) which are an indication of the fuel

consumption for the orbital transfer.

The basic principle of coplanar orbital transfer from
HEO to LEO is shown in Fig. 1. The in-plane tangential
retroburn ( AV1i) at HEO injects the vehicle into an
elliptical orbit entering the atmosphere at point E. As the
vehicle flies through the atmosphere, some of the kinetic
energy is converted to heat, and consequently upon leaving
the atmosphere ét point F, the apogee of the orbit is
decreased to the distance r2. Finally at the new apogee, a
second in-plane tangential burn (AV2) is executed to

circularize and thereby achieve the desired LEO. The




minimum-fuel aeroassisted transfer is thus proportional te

the minimum characteristic velocity, avVi1 + AVaz.

The basic equations of motion can be formulated in a
variety of ways, depending on the independent variable.

Using the time as the independent variable, we havet

dr

-—- = Vsinv (1a)
dt

av

-— = —PSIVZ'- (P/r3)sinv (1b)
dt .

dy '

-— = PSzV - (P/rzv -V/r)cosv (1lc)
dt

where S1 = 8Cpr/2m; Sz = SCL/2m
3. IMPACT OF SCALE HEIGHT

To analyze the effects of aerodynamic férces acting on
a vehicle in flight, it is necessary to model the planetary
atmosphere in which the flight takes place. The important
feature of the atmosphere affecting the performance of the
vehicle is the density. Hence, the main concern in modeling
the atmosphere will be to conveniently and accurately

represent the density.

A common way of representing the atmosphere is by a
differential form?

dp/p = (-1/H)dr = (-1/H)dh (2)



where H is called the scale height. Using this differential
form for the density, the atmosphere is characterized as a
locally exponential function. If the coefficient H, is
considered a constant over some small interval of altitude

(or radius), the integration of Eq. (2) yields

p(rs)exp(-(r-rs)/H) (3a)
p(bs Yexp(-(h-hs )/H) (3b)

P

In the earLier works4, 68, 1962 US Standard Atmospheres
has been used, assuming a constant scale height over the
entire interval of altitude of interest for AOTVs, ranging
from 50 km to 120 km. Strictly speaking, the scale height
is not constant over the entire interval, but changes
depending upon the altitude.

In the present case, our approach has two features:

(i) As our interest of altitude is above 50 km, we try to
use 1976 US Standaid Atmosphere® which is the same as 1962
Standard Atmosphere below 50 km, but replaces the 1962

Standard Atmosphere at the higher altitudes.

(ii) In the exponential atmospheric model of Eq. (3),
scale height has been assumed constant locally over a small
interval of altitude. In other words, the scale height has
been readjusted depending upon the interval (r-rs) used,
instead of using a constant scale height over the entire
interval of altitude ranging from 50 km to 120 km. This is

believed to be more accurate to justify the integration of




Eq. (2) and hence the exponential atmospheric model of Eq.

(3).

Using these two features, simulations are carried out
for a coplanar orbital transfer vehicle. Firstly, we use the

1962 US Standard Atmosphere with the following parameter

valuesS :
p = 3.986x1014 m2/sec?; m/S = 82 kg/m2
rs = 6443 km; C. = 0.45
P(;s) = 1.1x10-5; Cp = 1.54
H = 4.8 km,; re = 6378 km

Secondly, simulations are carried out with adjustable
scale.height, instead of a constant scale height of 4.8 km.
These simulations, carried out fof a constant lift-drag

ratio, are represented in a series of plots shown in Fig. 2-

6, with constant scale height ( line) and adjustable
scale height ( + +'+ line). One would easily notice the
appreciable difference between the two plots for altitude,
velocity, flight path angle, density, heating effect, and so
on. For example, in the altitude plot, a maximum discrepancy

of 5800 meters occurs at about 110 seconds at an altitude of

70 km giving an B8-percent error.

Attempts are being made to carry out these simulations
using (i) different formulations with altitude and energy as
independent variables and (ii) shuttle-derived atmospheric

datalo, 11
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Fig. 1 Aeroassisted Coplanar Orbital Transfer
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Abstract: In the method of matched asymptotic expansions, a
composite solution is constructed in terms of an outer solution
an inner solution and a common solution. A critical examination of
the method reveals that for a class of problems, the various terms
of the common solution are formulated as polynomials in stretched
variable without actually evaluating them from the outer solution.
Incidentally, this also shows that the common solution of the
method of matched asymptopic expansions is the same as +the
intermediate solution of singular perturbation method and that
these +two methods give identical results. Two illustrative

examples are provided.




1. Introduction

Singular perturbation problems, where suppression of a small
parameter affects order of the problems, have been solved by a
wide variety of techniques [1-5]. Two of these techniques,
singular perturbation method (SPM) [1,5] and the method of matched
asymptotic expansions (MAE) [2,3] have been independently
developed to a reasonable level of satisfaction. Essentially, the
SPM consists of expressing total solution in terms of an outer
solution an inner solution and an intermediate solution. On the
other hand, in +the method of MAE, a composite solution is
.constructed as the outer solution, the inner solution and a common
solution. These techniques have been so far thought to be
somewhat independent and their advantages and disadvantages have
been discussed in their applications to fluid mechanics and flight

mechanics [6-9].

In this paper, a critical examination of +the method of
matched asymptotic expansions reveals that the various terms
of the common solution of MAE can be generated as polynomials in
stretched variable without actually solving for them from the
outer solution as it is done presently. This also shows that the
common solution of the method of MAE and the intermediate solution
of the SPM are the same and hence that these methods give
identical results for a certain class of problems. Two

illustrative examples are given.
2. Method of Matched Asymptotic Expansions

The method of matched asymptotic expansions has been
extensively used in fluid mechanics [2]. In this method, a
composite solution is expressed as an outer solution, plus an
inner solution, and minus a common solution. The outer soclution
is valid outside the boundary layer and the inner solution is
valid inside the boundary 1layer. Then both inner and outer
solutions are common over an overlap region. The common solution

is obtained by using a matching principle, which is stated in a
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variety of ways. The matching principle also enables us to

evaluate the undetermined constants of outer and inner. solutions.

We describe briefly the method of MAE as applicable to

initial value problems. Consider

dx _
dt = f(x, 2, &, t) (la)
cgf = g(x, z, €, t) (1ib)

where x, and z are n-and m-dimensional state vectors respectively
and £ is a small positive parameter responsible for singular
perturbation. We begin by representing the solutions in the form

of a series in powers of £ as

[s o] W . s o] @ .
x(t,e) = ¥ x (t)e'; z(t,e) = ¥ 2 (t)e (2)
=0

L =0

and determine the various terms xﬁ)tt) and fu(t) by means of
formal substitution of (2) in (1) and comparison of coefficients
of equal powers of «. Then the following set of recursive

equations are obtained. For zeroth order approximation,

dx___(t) - #° [x(t), 2%(1), 0, t] (3a)

0 =g° [(xXV), 2@), 0, t] (3b)

and for first order approximation, we have

g.’t‘_‘___ﬁt)_ - £ [x® (1), 2P (1), x<o>(t) ’ Z(O)(‘t) b (42)
dz(o ’ (t) 1 Iy 1) ) ©)
i =g [x ' (t), z (t), x "(t), 2 (t), t] (4b)

where the notation fo, and f1 is used to indicate all the terms

3




on the right hand side. Note that the zeroth order problem (3) is
the same as the degenerate problem obtained by making .£¢ = 0 in
(1), and a boundary layer is said to exist at t = O. Since the
series (2) corresponds to the solution outside the boundary layer,

it is called an outer series.

The solution of (3) is obtained by using x“”(t=0) = x(0),;
and in general z“”(t=0) # z(0). On the otherhand, the solution
of (4) poses a problem, since the initial condition xu)tt=0) is
not yet known. Once x“)bt) is solved for, zu)(t) is
automatically known from (4b). In order to relate the outer
series (2) to the solution of (1) in the boundary layer, we use a

stretching transformation
T = t/e ‘ (5)
Then using (5) in (1), the stretched or inner problem becomes

dx(7)

PO = 2y, 2(0), £, o) (6a)
Q2T) = grz(r), 2(r), o, or] (6b)

This has inner series expansions of the form

x(t,e) =

: . _ © _. .
xV(T)e"; z(t,e) = £ z(1)e (7)
i =0

i

M8

Substitution of (7) in (6) and comparison of coefficients result

in for zeroth order approximation as




c_hsa;-izl - 0 (8a)
-{(0) - —- -
2 (1) - @) %)) (8b)

and for first order approximation

O (O

5T 2 x"T (). 27 (1)) (9a)

I
|
|
1
|
P~
N
"

-1 -(1) (0 =(0)

__Eh___i"‘_'l g x Yy, 2V (). ¥y 2%)] (8b)

The inner problem (6)-(9) has initial conditions as

i“”(7=0) = x(t20): 20)(t=0) = 2(t=0) (10a)

;“(1:0) = 0; EO(T=0) =0; 1> 0 (10Db)

Still, we have not resolved the problem of determining the
initial walue x“’tt:O) of the outer equation (4). This is done
by using a matching principle of the method of MAE. Thus the

matching principle is stated as

inner expansion of outer solution =

outer expansion of inner solution (11)
To include higher approximations, we have

.th . . th .
the j -term inner expansion of the k -term outer solution =

h , Ah . .
the k' -term outer expansion of the j -term inner solution (12)
where j and k are any two integers. In practice, j is usually
chosen as either k or k+1. Here, inner expansion of outer

solution (xo)i is obtained by extending the outer solution so that

it approaches the boundary layer. This is done by first




transforming the independent wvariable t to +that of the inner
variable ¥ = t/£ and then expanding it in powers of £..  Similarly,
the inner solution is extended so that it approaches beyond the
boundary layer. This is done by first +transforming +the inner
variable 7 to that of the outer variable t = £r. The solution is
then expanded in powers of £. This results in (xifD, the outer
expansion of inner solution. A suitable choice of undetermined

coefficients will be given by the matching principle
(x>) = (x) (13)

To any order approximation, the composite solution x_ is

given by
x - xo + xi _ (xo)i.
= x® + x - (x)° (14)

where x°, and x are the outer and inner solutions respectively
to any order of approximation and (x°)‘ = (£W° is also called

the common solution. Similar expressions can be given for z also.
3. An Examination of Common Solution

In this section, we will show that the common solution
defined as the inner expansion of the outer solution is simply
formulated as a polynomial in the stretched variable. The steps
involved in obtaining the common solution are (i) express the
outer solution in the inner variable 7, (ii) expand it around £ =
0, and (iii) rearrange the resulting solution in powers of &£.

Thus, consider the outer solution as

xX°(t) = Xty + exV(t) +..... .. (15)
We express this outer solution in the inner variable 7 = t/e as
xX°(e7) = xXV(eT) + exV(eT) +..... (16)
6



Expanding (21) around € = 0, we get
A (0>
(xO)L - [ x(O)(ET) l + 5‘3’_‘---&53_) I + ... _] +
£=0 e £=0
<4)
g[ qu(ET)I + 8932__$€E) | . _.__] (17)
£=0 £=0
Now evaluation of function fu(sf) at £ = 0 in 1T- ©plane is

the same as its evaluation at t = 0 in t-plane, and the partial
derivative of function iu(sr), with respect to £€ in T-plane 1is
the same as its partial derivative w.r.t. t multiplied by T in

t-plane. Thus,

- ({0)
oL _ (0) _ Q’_.‘____(tl T .
R A A e RS
" (1) -
c x‘i)(t=0) + 5723-__£§)| +. ..
- ot t =0 -
(0O)
= xP(t=0) + s[ x P (t=0) + 7T Qg-£-£§)| ] +....
t=0
= x'20) + s[ x‘1 (£=0) + -rx‘°’(0)] T
(x%)* = ;:‘m(r) + s;‘“(r) ..., (18)
where,
;(0)(1_) - x<o>(0)
REY (1) L(O) } (19)
x (T) = x (0) + 7Tx (0)



Here, the dot over x denotes differentiation of x w. r. t. t
Similar expression can be obtained for the function =z, Let us

note that the intermediate solution of SPM is obtained by (i)

expanding the outer solution around t = 0, (ii) expressing it in
the inner variable T, and (iii) rearranging the resulting
solution in powers of £ [1,5]. Then, the common solution (18)

of the method of MAE is found to be the same as the intermediate
solution of the SPM. Thus, the outer and inner solutions being
the same in the SPM and the method of MAE, we clearly see that
these two methods give identical results. Essentially, this
equivalence means that the expansion of the outer solution around
t = 0 and transformation into T-plane is the same as
transformation of the outer solution into T-plane first and then
expansion around &£ =0. The main advantage of +the present
formulation of the common solution is that its various terms can
be very easily generated as polynomials in T and hence one need

not have explicit outer solution to arrive at the common solution.

In this way, we suggest an improved method of MAE, where the
outer and inner solutions are obtained as before and the common
solution is generated simply as a polynomial in the stretched
variable T, instead of evaluating it from the explicit outexr

solutions as it is done usually [2].
4. Examples

We give two examples, one on an initial value problem, and

the other on a boundary value problem [10].

Example 1: Initial Value Problem

Consider a simple second order system so that we can get

explicit expressions for the solutions.

gf = z x(t=0) = a (20a)
dz _ - -
Sa‘E - - xXx -2 z(t=0) = b (20b)




Applying the method of MAE described in Section 2, we summarize
the results as follows. The outer solutions corresponding to (3)

and (4) are

x%(t) = ae-t; z2®’ (1) = -ae™
x(t) = x**’(0) - atjet (21)
zV(t) = [-x'*’(0) + at - aJe"

The inner solutions corresponding to (8) and (9) are

—(0)(1_) = a: 2(0)(7) = -a + (a+ b)e—T
xVY(t) = (a+b) - atr - (a + ble (22)
z¥(t) = -(2a + b) + ar + [2a + b + (a + b)r]e ©

Considering the two-term expansions only, the common solution (CS)

for x is obtained as

©

(cs) = (xH)° = ) (23)

From (22), we obtain (x})° , the outer expansion of the inner
solution by first expressing the inner solution in the outer

variable t = £ and then expanding it around € = 0. Thus

x(t) =a+e[(a+b) - ar - (a + ble ’]

L, 0

(x)

a(l - t) + £(a + b) (24)

Next, from (21), we obtain (x°f, the inner expansion of the

outer solution as

x°(t) = aet + £[xV(0) - at]e

o,

(x*)" = a(1l - t) + ex(0) (25)




/7
Alternatively, in the improved approach, we formulate (x°)' as

(xo)t - QO)(t=0) + e[x“)tt=0) + TX“”(t=0)]

a + e[x*(0) + 7(-a)]

>

a(l - t) + ex*(0) (26)

Equating (24) and (25), we get the wvalue of undetermined

coefficient xu)(O) as
x*(0) = (a + b) (27)

Similarly for z, we have

L,o 1.0

(CS) (z)" = (2) (28)

From (22), we obtain (zi)o, the outer expansion of the inner

solution as

2'(t) = [-a + (a+ble ]+

£[-(2a + b) + ar + {2a + b + (a + b)r}e "]

(=]

(2)° = -a(l - t) + £[-(2a + b)] (29)

Next, we obtain (z°)i, the inner expansion of the outer

solution as

z°(t) = -aet + £[2*(0) + atle "
-3 >

(%) = -a(1 - t) + £2V(0) ‘ (30)

Alternatively, in the improved method, we formulate (zo)i as

o,i

(2°) = 22(t=0) + £02"(t=0) + 2% (£=0)]

= -a + s[ﬁ”(ﬂ) + 7Ta]

10




)

= -a(l - t) + £2¥(0) (31)

Using (28)-(30), we get the wvalue of the undetermined

coefficient z*(0) as
2*(0) = -(2a + b) ' (32)
The composite solution corresponding to (14) is

aet + e[(a + b)(e" - %) - ate™] (33a)

xc(t,s)

—ae" + (a + b)(1 + t)eC

zc(t,s)

e[(2a + b)(e™ - o) + ate™] (33b)

Example 2. Boundary Value Problem -

We present a boundary value problem and obtain all

solutions upto second order (two-term) approximation [10].

Consider

ax _ x(t=0) = a; x(t=1) = b (34)

)
|
|

1l

- X - 2

Since the boundary conditions are imposed on x omnly, it is
enough if we summarize the solutions for x only. The outer

solutions are

(1-i)
e

x(O)(t) b }
(35)
[x*(0) - bet]e T

xu) (t)

The inner solution are

11
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~(0)
x (

T) be + (a - be)e ' 1 -
} (36)
[be - ber + {(a - be)r - be}e '] J

;‘(1)(1_)

The common solution, obtained as outer expansion of

inner solution, is

L,0

(x) = be(l - t) + £be (37)

Similarly, the common solution, obtained as the inner expansion of

the outer solution, is

o,l

(x°) = be(l - t) + £x7(0) (38)

Alternatively, in the modified method, we formulate (xc’).L as
i

(x>)" = X®(t=0) + e[x(£=0) + X7 (t=0)]

be + £[x*(0) - ber]

1]

)

be(l - t) + ex®(0) (39)

Let us note that the common solution (38) for (x"’)-L can Dbe
easily generated as shown by (39). Equating (37) with (38) or
(39), we get the value of undetermined coefficient x“)(O) g2 Dbe.
Finally, the composite solution is given by

(4—-t )

x (t, &) = [1 + £(1 - t)]be +
£

[(a - be)(1 + t) - cbele (40)

5. Conclusions

In this paper, a critical examination of the method of MAE
have revealed that the terms of the common solution could be
generated as polynomials in stretched variable without actually

solving for them as it is done presently. We have also seen that

12




the common solution of the method of MAE 1is the same as the
intermediate solution of the SPM and hence these two methods give
identical results. Two examples have been given for

jllustration.
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